The Middle Planets

Earth is the third planet from the Sun and the fifth largest:
Orbit: 149,600,000 km (1.00 AU) from Sun.
Diametre: 12,756.3 km
Mass: 5.972e24 kg
The Earth is divided into several layers which have distinct chemical and seismic properties (depths in km): 
0- 40 Crust
40- 400 Upper mantle
400- 650 Transition region
650-2700 Lower mantle
2700-2890 D'' layer
2890-5150 Outer core
5150-6378 Inner core 
The crust varies considerably in thickness, it is thinner under the oceans, thicker under the continents. The inner core and crust are solid; the outer core and mantle layers are plastic or semi-fluid. The various layers are separated by discontinuities which are evident in seismic data; the best known of these is the Mohorovicic discontinuity between the crust and upper mantle. 
Most of the mass of the Earth is in the mantle, most of the rest in the core; the part we inhabit is a tiny fraction of the whole (values below x10^24 kilograms): 
Atmosphere = 0.0000051
Oceans = 0.0014
Crust = 0.026
Mantle = 4.043
Outer core = 1.835
Inner core = 0.09675
The core is probably composed mostly of iron (or nickel/iron) though it is possible that some lighter elements may be present, too. Temperatures at the centre of the core may be as high as 7500 K, hotter than the surface of the Sun. The lower mantle is probably mostly silicon, magnesium and oxygen with some iron, calcium and aluminium. The upper mantle is mostly olivene and pyroxene (iron/magnesium silicates), calcium and aluminium. We know most of this only from seismic techniques; samples from the upper mantle arrive at the surface as lava from volcanoes but the majority of the Earth is inaccessible. The crust is primarily quartz (silicon dioxide) and other silicates like feldspar. Taken as a whole, the Earth's chemical composition (by mass) is: 
34.6% Iron
29.5% Oxygen
15.2% Silicon
12.7% Magnesium
2.4% Nickel
1.9% Sulphur
0.05% Titanium
The Earth is the densest major body in the solar system. 
The other terrestrial planets probably have similar structures and compositions with some differences: the Moon has at most a small core; Mercury has an extra large core (relative to its diameter); the mantles of Mars and the Moon are much thicker; the Moon and Mercury may not have chemically distinct crusts; Earth may be the only one with distinct inner and outer cores. Note, however, that our knowledge of planetary interiors is mostly theoretical even for the Earth. 
Unlike the other terrestrial planets, Earth's crust is divided into several separate solid plates which float around independently on top of the hot mantle below. The theory that describes this is known as plate tectonics. It is characterized by two major processes: spreading and subduction. Spreading occurs when two plates move away from each other and new crust is created by upwelling magma from below. Subduction occurs when two plates collide and the edge of one dives beneath the other and ends up being destroyed in the mantle. There is also transverse motion at some plate boundaries (i.e. the San Andreas Fault in California) and collisions between continental plates (i.e. India/Eurasia). There are (at present) eight major plates: 
North American Plate - North America, western North Atlantic and Greenland 
South American Plate - South America and western South Atlantic 
Antarctic Plate - Antarctica and the "Southern Ocean" 
Eurasian Plate - eastern North Atlantic, Europe and Asia except for India 
African Plate - Africa, eastern South Atlantic and western Indian Ocean 
Indian-Australian Plate - India, Australia, New Zealand and most of Indian Ocean 
Nazca Plate - eastern Pacific Ocean adjacent to South America 
Pacific Plate - most of the Pacific Ocean (and the southern coast of California!) 
There are also twenty or more small plates such as the Arabian, Cocos, and Philippine Plates. Earthquakes are much more common at the plate boundaries. Plotting their locations makes it easy to see the plate boundaries (right). 
The Earth's surface is very young. In the relatively short (by astronomical standards) period of 500,000,000 years or so erosion and tectonic processes destroy and recreate most of the Earth's surface and thereby eliminate almost all traces of earlier geologic surface history (such as impact craters). Thus the very early history of the Earth has mostly been erased. The Earth is 4.5 to 4.6 billion years old, but the oldest known rocks are about 4 billion years old and rocks older than 3 billion years are rare. The oldest fossils of living organisms are less than 3.9 billion years old. There is no record of the critical period when life was first getting started. 
71 Percent of the Earth's surface is covered with water. Earth is the only planet on which water can exist in liquid form on the surface (though there may be liquid ethane or methane on Titan's surface and liquid water beneath the surface of Europa). Liquid water is, of course, essential for life as we know it. The heat capacity of the oceans is also very important in keeping the Earth's temperature relatively stable. Liquid water is also responsible for most of the erosion and weathering of the Earth's continents, a process unique in the solar system today (though it may have occurred on Mars in the past). 
The Earth's atmosphere is 77% nitrogen, 21% oxygen, with traces of argon, carbon dioxide and water. There was probably a very much larger amount of carbon dioxide in the Earth's atmosphere when the Earth was first formed, but it has since been almost all incorporated into carbonate rocks and to a lesser extent dissolved into the oceans and consumed by living plants. Plate tectonics and biological processes now maintain a continual flow of carbon dioxide from the atmosphere to these various "sinks" and back again. The tiny amount of carbon dioxide resident in the atmosphere at any time is extremely important to the maintenance of the Earth's surface temperature via the greenhouse effect. The greenhouse effect raises the average surface temperature about 35 degrees C above what it would otherwise be (from a frigid -21 C to a comfortable +14 C); without it the oceans would freeze and life as we know it would be impossible. 
The presence of free oxygen is quite remarkable from a chemical point of view. Oxygen is a very reactive gas and under "normal" circumstances would quickly combine with other elements. The oxygen in Earth's atmosphere is produced and maintained by biological processes. Without life there would be no free oxygen. 
The interaction of the Earth and the Moon slows the Earth's rotation by about 2 milliseconds per century. Current research indicates that about 900 million years ago there were 481 18-hour days in a year. 
Earth has a modest magnetic field produced by electric currents in the outer core. The interaction of the solar wind, the Earth's magnetic field and the Earth's upper atmosphere causes the auroras (see the Interplanetary Medium). Irregularities in these factors cause the magnetic poles to move and even reverse relative to the surface; the geomagnetic north pole is currently located in northern Canada. (The "geomagnetic north pole" is the position on the Earth's surface directly above the south pole of the Earth's field; see this diagram.) 
The Earth's magnetic field and its interaction with the solar wind also produce the Van Allen radiation belts, a pair of doughnut shaped rings of ionized gas (or plasma) trapped in orbit around the Earth. The outer belt stretches from 19,000 km in altitude to 41,000 km; the inner belt lies between 13,000 km and 7,600 km in altitude. 

Earth's Satellite
Earth has only one natural satellite, the Moon. But thousands of small artificial satellites have also been placed in orbit around the Earth. Asteroids 3753 Cruithne and 2002 AA29 have complicated orbital relationships with the Earth; they're not really moons, the term "companion" is being used. It is somewhat similar to the situation with Saturn's moons Janus and Epimetheus. Lilith doesn't exist but it's an interesting story. 

Distance Radius Mass
Satellite (000 km) (km)   (kg)
--------- --------     ------ -------
Moon        384      1738 7.35e22


Mars is the fourth planet from the Sun and the seventh largest: 
Orbit: 227,940,000 km (1.52 AU) from Sun.
Diametre: 6,794 km
Mass: 6.4219e23 kg
Mars' orbit is significantly elliptical. One result of this is a temperature variation of about 30 C at the subsolar point between aphelion and perihelion. This has a major influence on Mars' climate. While the average temperature on Mars is about 218 K (-55 C, -67 F), Martian surface temperatures range widely from as little as 140 K (-133 C, -207 F) at the winter pole to almost 300 K (27 C, 80 F) on the day side during summer. 
Though Mars is much smaller than Earth, its surface area is about the same as the land surface area of Earth. 
Except for Earth, Mars has the most highly varied and interesting terrain of any of the terrestrial planets, some of it quite spectacular: 
Olympus Mons: the largest mountain in the Solar System rising 24 km (78,000 ft.) above the surrounding plain. Its base is more than 500 km in diameter and is rimmed by a cliff 6 km (20,000 ft) high (right). 
Tharsis: a huge bulge on the Martian surface that is about 4000 km across and 10 km high. 
Valles Marineris: a system of canyons 4000 km long and from 2 to 7 km deep (top of page); 
Hellas Planitia: an impact crater in the southern hemisphere over 6 km deep and 2000 km in diameter. 
Much of the Martian surface is very old and cratered, but there are also much younger rift valleys, ridges, hills and plains. 
The southern hemisphere of Mars is predominantly ancient cratered highlands (left) somewhat similar to the Moon. In contrast, most of the northern hemisphere consists of plains which are much younger, lower in elevation and have a much more complex history. An abrupt elevation change of several kilometres seems to occur at the boundary. The reasons for this global dichotomy and abrupt boundary are unknown (some speculate that they are due to a very large impact shortly after Mars' accretion). The interior of Mars is known only by inference from data about the surface and the bulk statistics of the planet. The most likely scenario is a dense core about 1700 km in radius, a molten rocky mantle somewhat denser than the Earth's and a thin crust. Data from Mars Global Surveyor indicates that Mars' crust is about 80 km thick in the southern hemisphere but only about 35 km thick in the north. Mars' relatively low density compared to the other terrestrial planets indicates that its core probably contains a relatively large fraction of sulfur in addition to iron (iron and iron sulfide). 
Like Mercury and the Moon, Mars appears to lack active plate tectonics at present; there is no evidence of recent horizontal motion of the surface such as the folded mountains so common on Earth. With no lateral plate motion, hot-spots under the crust stay in a fixed position relative to the surface. This, along with the lower surface gravity, may account for the Tharis bulge and its enormous volcanoes. There is no evidence of current volcanic activity, however. But there is new evidence from Mars Global Surveyor that Mars may have had tectonic activity in its early history, making comparisons to Earth all the more interesting! 
There is very clear evidence of erosion in many places on Mars including large floods and small river systems (right). At some time in the past there was clearly some sort of fluid on the surface. Liquid water is the obvious fluid but other possibilities exist. There may have been large lakes or even oceans; the evidence for which was strenghtened by some very nice images of layered terrain taken by Mars Global Surveyor. But it seems that this occurred only briefly and very long ago; the age of the erosion channels is estimated at about nearly 4 billion years. (Valles Marineris was NOT created by running water. It was formed by the stretching and cracking of the crust associated with the creation of the Tharsis bulge.) 
Early in its history, Mars was much more like Earth. As with Earth almost all of its carbon dioxide was used up to form carbonate rocks. But lacking the Earth's plate tectonics, Mars is unable to recycle any of this carbon dioxide back into its atmosphere and so cannot sustain a significant greenhouse effect. The surface of Mars is therefore much colder than the Earth would be at that distance from the Sun. 
Mars has a very thin atmosphere composed mostly of the tiny amount of remaining carbon dioxide (95.3%) plus nitrogen (2.7%), argon (1.6%) and traces of oxygen (0.15%) and water (0.03%). The average pressure on the surface of Mars is only about 7 millibars (less than 1% of Earth's), but it varies greatly with altitude from almost 9 millibars in the deepest basins to about 1 millibar at the top of Olympus Mons. But it is thick enough to support very strong winds and vast dust storms that on occasion engulf the entire planet for months. Mars' thin atmosphere produces a greenhouse effect but it is only enough to raise the surface temperature by 5 degrees (K); much less than what we see on Venus and Earth. 
Mars has permanent ice caps at both poles composed mostly of solid carbon dioxide ("dry ice"). The ice caps exhibit a layered structure with alternating layers of ice with varying concentrations of dark dust. In the northern summer the carbon dioxide completely sublimes, leaving a residual layer of water ice. It's not known if a similar layer of water ice exists below the southern cap (left) since its carbon dioxide layer never completely disappears. The mechanism responsible for the layering is unknown but may be due to climatic changes related to long-term changes in the inclination of Mars' equator to the plane of its orbit. There may also be water ice hidden below the surface at lower latitudes. The seasonal changes in the extent of the polar caps changes the global atmospheric pressure by about 25% (as measured at the Viking lander sites). 
Recent observations with the Hubble Space Telescope (right) have revealed that the conditions during the Viking missions may not have been typical. Mars' atmosphere now seems to be both colder and dryer than measured by the Viking landers. ( more details from STScI) 
The Viking landers performed experiments to determine the existence of life on Mars. The results were somewhat ambiguous but most scientists now believe that they show no evidence for life on Mars (there is still some controversy, however). Optimists point out that only two tiny samples were measured and not from the most favourable locations. More experiments will be done by future missions to Mars. 
A small number of meteorites (the SNC meteorites) are believed to have originated on Mars. 
On 1996 Aug 6, David McKay et al announced the first identification of organic compounds in a Martian meteorite. The authors further suggest that these compounds, in conjunction with a number of other mineralogical features observed in the rock, may be evidence of ancient Martian microorganisms. (left) 
Exciting as this is, it is important to note while this evidence is strong it by no means establishes the fact of extraterrestrial life. There have also been several contradictory studies published since the McKay paper. Remember, "extraordinary claims require extraordinary evidence." Much work remains to be done before we can be confident of this most extraordinary claim. 
Large, but not global, weak magnetic fields exist in various regions of Mars. This unexpected finding was made by Mars Global Surveyor just days after it entered Mars orbit. They are probably remnants of an earlier global field that has since disappeared. This may have important implications for the structure of Mars' interior and for the past history of its atmosphere and hence for the possibility of ancient life. 
When it is in the nighttime sky, Mars is easily visible with the unaided eye. Its apparent brightness varies greatly according to its relative position to the Earth. There are several Web sites that show the current position of Mars (and the other planets) in the sky. More detailed and customized charts can be created with a planetarium program such as Starry Night. 

Mars' Satellites
Mars has two tiny satellites which orbit very close to the surface: 

Distance Radius Mass
Satellite (000 km) (km) (kg) 
--------- --------     ------ ------- 
Phobos      9          11   1.08e16 
Deimos    23            6   1.80e15 
("Distance" is measured from the centre of Mars). 


The Universe

Black and White Holes

The Stars

Our Sun

Our Inner Planets

Our Middle Planets

Our Outer Planets Our Universe